Fall & Spring Course Announcement: AMS-531

Laboratory Rotations in Computational Biology

Dr. Robert C. Rizzo

Class schedule and syllabus: http://www.ams.sunysb.edu/~rizzo (go to Teaching)

GENERAL INFORMATION: This is a two-semester course in which first-year PhD students spend at least 8 weeks in each of three different laboratories actively participating in the research of participating Computational Biology faculty. At the end of each rotation, students give a presentation of their lab activities and accomplishments. The primary goal of rotations is to help students choose a research advisor and to help faculty members choose students. Students register for AMS 531 in both the Fall and Spring semesters of the first year. Fall and Spring, 0-3 credits, S/U grading. Crosslisted with PHY 584

The goal of "Lab Rotations" is for PhD students in the AMS Computational Biology Track to learn in detail what and how research is conducted in at least three groups over the Fall and Spring semesters of the first year. Note that Lab Rotations are required of all PhD students. For Masters students, Lab Rotations are optional and may be pursued with interested faculty on a case-by-case basis. At the end of each rotation, students give a brief synopsis (~15 minutes) of their lab activities and accomplishments. The goal of the rotations is to help students choose a research advisor and to help faculty members choose students. Students should consult the AMS compbio track webpage at http://compbio.ams.sunysb.edu, talk with senior Stony Brook students, and contact potential PIs in an effort to narrow down a list to 3-4 potential laboratories. Depending on availability, and in conjunction with the AMS-531 instructor, three rotations are then scheduled for the following dates:

Rotation 1: Sep 20th – Nov 15th (Fall)
Rotation 2: Nov 15th – Feb 14th (Fall-Spring)
Rotation 3: Feb 14th – April 18th (Spring)

Lab Rotation Guidelines: The goal of lab rotations is to help students choose a research advisor and to help faculty members choose students. In particular, faculty members use rotations as a way to help gauge how a student will work in a laboratory setting and if they would be a productive team member of the lab. With this objective in mind it is important to consider the following points when doing each rotation:

Become fully engaged in the lab during your rotation. Make arrangements with the group leader to have a desk or other place at which you can work and be sure to go to the lab everyday. If you need to work on class assignments do your homework in the lab. Students that rarely show up leave a less than favorable impression.

Show interest in the lab's research. Ask questions.

Read key papers from the lab. Become well-acquainted with tools being used in the group.

Be proactive in communicating with others in the lab. Ask for help and guidance to get started.

Attend lab meetings. Ask questions.

Be proactive in asking your rotation advisor to discuss with you research projects which could be pursued should you join the group permanently.

Keep in mind that faculty members must devote considerable time, effort, as well as provide financial assistance when they commit to becoming an advisor to a student. Thus, faculty members want to be sure that before they make such a commitment a student has good work habits, can communicate, is easy to work with, is interested in the lab's research, and wants to succeed in graduate school. Lab rotations can be used to show to potential advisors you have such qualities.